Detecting Low Frequency SNVs with NGS
Sequencing - Introducing VarPROWL
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Introduction
Importance of detecting LFSNVS

Low frequency single nucleotide variants (LFSNVs) have many important
medical uses:

e Deciding which medication is best
e Discovery of resistant subtypes

¢ |dentifying tissue of origin

e |mmunology screening

Difficulties in LFSNV detection

e Artifacts related to formalin-fixed, paraffin embedded (FFPE) samples
e Polymerase chain reaction (PCR) artifacts

e Alignment issues (e.g. indels appearing as SNVs)

e Context specific errors (CSES)

e [ ow complexity regions

e Improper/ imperfect reference

Context-specific errors
Genomic context causes inflated error rates in genomic sequencing' 2
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Low complexity regions

Low complexity regions are a special kind of CSE that increases
sequencing error rates
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The curse of high depth
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Conclusions

Concluding remarks
VarPROWL is a great tool for detecting LFSNVs

e Direct modeling of sequencer error rates reduces FPs, while not
sactrificing sensitivity

e Genomic context (e.g. CSEs) and low complexity are accounted for

e Robust to a wide range of sequencing depths

e Sequencing platform independent (llumina, PacBio, lon Torrent)

Future work

e Detection of other mutation types, including indels and CNVs

e Modeling of paired tumor / normal samples

e Porting from R to Java or C

¢ |ncorporation of other data, including mapping quality and PhiX error rates
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Data & software
Samples

e Seven cancer samples (FFPE cell lines and FFPE tissue), three non-cancer
samples, across four different cancer types

e Sequenced using Quintiles Comprehensive Cancer Panel (QCCP)

e Variants validated using the lon AmpliSeg™ Cancer Hotspot
Panel V2 (ASCP)

ASCP and QCCP

QCCP (lllumina) e Hybridization based enrichment

e SNVs, indels, copy number (Agilent)
variation, and microsatellite instability ASCP (lon Torrent)

assessed in coding sequences e Assesses hotspots (2800 COSMIC
of 208 cancer, DNA repair, and mutations) from 50 genes
pharmacogenomic genes (22kbp of captured regions)

* 17 genes assessed for characterized , bR pased

genomic rearrangements
e PGM NGS platform

Assay overlap ASCP and QCCP

AmpliSeg™ Hotspot
Cancer Panel (v2):
21.8 kb target region

Quintiles Comprehensive
Cancer Panel:
1.1mb target reigion

Orthogonal validation

Validation using orthogonal =~ e iz rene sseems seensr.om lonTorrent
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Validation procedure

If depth was > 100 for lllumina® (ILL) and > 500 for lon Torrent (IT), then the following
table was used to determine true positive (TP), true negative (TN) or indeterminate
(Ind) status. Here, variant (Var) is showing both read directions having allele
frequencies > 0:01, otherwise reference (Ref).

Var on [LL TP Ind
Ref on ILL Ind TN

il
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VarPROWL
VarPROWL

e Open source under GNU public license

e Written in R and Perl

e Fast for targeted panels (@bout 30 minutes for a QCCP sample)

e Allows for parameter tuning to match sequencing chemistry (ILL, IT, etc.),
sample type (FF or FFPE) and enrichment type (PCR or hybridization)

Modelling sequencing error rates

Sequencing error rates of forward and
reverse reads are estimated independently log e(X) — X~
using a logistic regression model: 1 — e(X) ’

where:

e X is the regression matrix containing information on complexity metrics,
genomic context, nearby error rates, base qualities for reference and non-
reference calls and the identity of the non-reference nucleotide.

e ¢(X) is the sequencing error rate
¢ vy is estimated using maximum likelihood

Improved error rate modelling
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Variation in error rate modelled using beta-binomial

e No model is perfect ® ¢ is the sequencing error rate
e Each read may have different e dis the sequencing depth
error profile e v is the non-reference count

e Model the distribution (or uncertainty) e q and B are estimated using maximum

in error rates using the beta likelihood
distribution
e ~ Beta (a,B) v ~ Binom (e,d)
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Results
Variant concordance

Variant calls across all samples meeting the minimum QC criteria for each platform

268 variants
detected in ASCP

48,404 variants
detected in QCCP

168 48,236
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Variant calling commands
VarScan 2

java -Xmx1g -jar /opt/downloads/varscan/VarScan.v2.3.6.jar mpileup2snp input.pileup --output-vcf 1
--min-var-freq 0.01 --mincoverage 20 --min-reads? 4 > input.varscan?.liberal.vcf

GATK

java -Xmx2g -jar /opt/downloads/GATK-3.1/GenomeAnalysisTK jar -T UnifiedGenotyper -R hg19.fa -|
input.rg.bam -stand_call_conf 30 -stand_emit_conf 10 -dt NONE -L ../QCCP.annot.bed > input.gatk.vcf

Platypus
python /opt/downloads/Platypus_0.5.2/Platypus.py callVariants --bamFiles=input.rg.bam --refFile=
hg19.fa --output=input.platypus.vcf --filterDuplicates=0 --regions=../QCCP.annot.platypus.txt

Comparison variant callers
The features offered for Genome Analysis Toolkit (GATK)*, VarScan 2 (VS2)°, Platypus (PP)° and
VarPROWL are compared. CSE=context specific error and LRA=local realignment/ assembly.

X

Low complexity ?

CSE X ? X
Bidirectionality X X X X
Error modeling X ? X

LRA X X

Indel Calling X X X

At the time of analysis, the publication for Platypus was not available, so not all features were able to be determined.

ROC curves for all variants

ROC curves for positions with variant
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Concordance between callers validated variants
GATK and Platypus never called

variants below 5%. GATK also GATK
never called false positives.

VarScan 2

Platypus

VarPROWL

Concordance between callers — QCCP

Concordance across the entire VarScan 2
QCCP panel (not just orthogonally
validated positions)

Platypus
VarPROWL

Program-specific variant calls were
higher among callers better at
detecting LFSNVs



