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Introduction
Importance of detecting LFSNVS
Low frequency single nucleotide variants (LFSNVs) have many important 
medical uses:

•	Deciding which medication is best

•	Discovery of resistant subtypes

•	 Identifying tissue of origin

•	 Immunology screening

Difficulties in LFSNV detection
•	Artifacts related to formalin-fixed, paraffin embedded (FFPE) samples

•	Polymerase chain reaction (PCR) artifacts

•	Alignment issues (e.g. indels appearing as SNVs)

•	Context specific errors (CSEs)

•	Low complexity regions

•	 Improper/ imperfect reference

Context-specific errors
Genomic context causes inflated error rates in genomic sequencing1, 2

Low complexity regions
Low complexity regions are a special kind of CSE that increases 
sequencing error rates

The curse of high depth
High depth can increase false 
positive rates3, with inaccurate 
error modeling contributing (e.g. 
true error = 1% and estimated 
= 0.5%).

Conclusions
Concluding remarks
VarPROWL is a great tool for detecting LFSNVs

•	Direct modeling of sequencer error rates reduces FPs, while not 
sacrificing sensitivity

•	Genomic context (e.g. CSEs) and low complexity are accounted for

•	Robust to a wide range of sequencing depths

•	Sequencing platform independent (Illumina, PacBio, Ion Torrent)

Future work
•	Detection of other mutation types, including indels and CNVs

•	Modeling of paired tumor / normal samples

•	Porting from R to Java or C

•	 Incorporation of other data, including mapping quality and PhiX error rates
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Data & software
Samples
•	 Seven cancer samples (FFPE cell lines and FFPE tissue), three non-cancer 

samples, across four different cancer types

• 	Sequenced using Quintiles Comprehensive Cancer Panel (QCCP)

•	 Variants validated using the Ion AmpliSeqTM Cancer Hotspot  
Panel V2 (ASCP)

Assay overlap ASCP and QCCP

ASCP and QCCP
QCCP (Illumina)

•	 SNVs, indels, copy number 
variation, and microsatellite instability 
assessed in coding sequences 
of 208 cancer, DNA repair, and 
pharmacogenomic genes

•	 17 genes assessed for characterized 
genomic rearrangements

•	 Hybridization based enrichment 
(Agilent) 

ASCP (Ion Torrent)

•	 Assesses hotspots (2800 COSMIC 
mutations) from 50 genes  
(22kbp of captured regions)

•	 PCR based

•	 PGM NGS platform

VarPROWL
VarPROWL
•	 Open source under GNU public license

•	 Written in R and Perl

•	 Fast for targeted panels (about 30 minutes for a QCCP sample)

•	 Allows for parameter tuning to match sequencing chemistry (ILL, IT, etc.), 

sample type (FF or FFPE) and enrichment type (PCR or hybridization)

Modelling sequencing error rates
Sequencing error rates of forward and 
reverse reads are estimated independently 
using a logistic regression model:

where:

•	 X is the regression matrix containing information on complexity metrics, 
genomic context, nearby error rates, base qualities for reference and non-
reference calls and the identity of the non-reference nucleotide.

•	 e(X) is the sequencing error rate

•	 γ is estimated using maximum likelihood

Results
Variant concordance
Variant calls across all samples meeting the minimum QC criteria for each platform

Variant linearity
Variant calls across all samples 
meeting the minimum QC 
criteria for each platform

Variant calling commands
VarScan 2
java -Xmx1g -jar /opt/downloads/varscan/VarScan.v2.3.6.jar mpileup2snp input.pileup --output-vcf 1 
--min-var-freq 0.01 --mincoverage 20 --min-reads2 4 > input.varscan2.liberal.vcf

GATK
java -Xmx2g -jar /opt/downloads/GATK-3.1/GenomeAnalysisTK.jar -T UnifiedGenotyper -R hg19.fa -I 
input.rg.bam -stand_call_conf 30 -stand_emit_conf 10 -dt NONE -L ../QCCP.annot.bed > input.gatk.vcf

Platypus
python /opt/downloads/Platypus_0.5.2/Platypus.py callVariants --bamFiles=input.rg.bam --refFile= 
hg19.fa --output=input.platypus.vcf --filterDuplicates=0 --regions=../QCCP.annot.platypus.txt

Variation in error rate modelled using beta-binomial
•	 No model is perfect

•	 Each read may have different  
error profile

•	 Model the distribution (or uncertainty) 
in error rates using the beta 
distribution

	 e ~ Beta (α,β)   v ~ Binom (e,d)

•	 e is the sequencing error rate

•	 d is the sequencing depth

•	 v is the non-reference count

•	 α and β are estimated using maximum 
likelihood

Bidirectionality check
This filter ensures concordance in variant frequency 
between read directions.

ROC curves for all variants  
ROC curves for positions with variant 
frequency > 1% on QCCP that have 
been orthogonally validated on ASCP 
as TP or TN.

VarPROWL has the best performance, 
with a high true positive rate and a low 
false positive rate.

ROC curves among 
variants < 5%  
GATK and Platypus never called 
variants below 5%. GATK also never 
called false positives.

Concordance between callers validated variants  
GATK and Platypus never called 
variants below 5%. GATK also  
never called false positives.

Concordance between callers –􀀀QCCP  
Concordance across the entire  
QCCP panel (not just orthogonally 
validated positions)

Program-specific variant calls were 
higher among callers better at 
detecting LFSNVs

Orthogonal validation
Validation using orthogonal 
sequencing technologies, 
mitigates sequencer  
specific error

Validation procedure
If depth was > 100 for Illumina® (ILL) and > 500 for Ion Torrent (IT), then the following 
table was used to determine true positive (TP), true negative (TN) or indeterminate 
(Ind) status. Here, variant (Var) is showing both read directions having allele 
frequencies > 0:01, otherwise reference (Ref).

Improved error rate modelling
Error rates are modelled 
more accurately than 
Illumina’s average variant 
base quality, alone.

Sample Var on IT Ref on IT Ref on IT

Var on ILL TP Ind

Ref on ILL Ind TN

1) Expression Analysis a Quintiles Company, Durham, NC 
2) Quintiles Translational R&D Oncology, Westmont, IL, USA

AmpliSeqTM Hotspot 
Cancer Panel (v2):  
21.8 kb target region

21kb

Quintiles Comprehensive 
Cancer Panel:  
1.1mb target reigion

268 variants  
detected in ASCP 168 48,236100

48,404 variants  
detected in QCCP

Comparison variant callers  
The features offered for Genome Analysis Toolkit (GATK)4, VarScan 2 (VS2)5, Platypus (PP)6 and 
VarPROWL are compared. CSE=context specific error and LRA=local realignment/ assembly.

Feature GATK VS 2 PP�* VarPROWL

Low complexity ? X
CSE X ? X

Bidirectionality X X X X
Error modeling X ? X

LRA X X
Indel Calling X X X

�At the time of analysis, the publication for Platypus was not available, so not all features were able to be determined.


