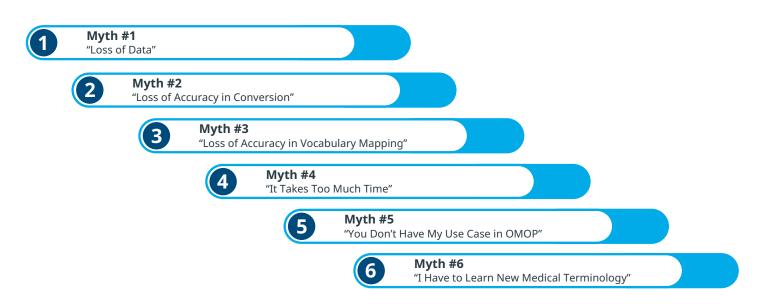
≣IQVIA

OMOP Myth Busters

Dispelling misconceptions about common data model transformations

THE PROBLEM

Observational health databases are not created equal. The purpose for collecting the data, the format of the data and terminologies used differ among healthcare settings and data types (e.g. electronic health record, patient registries, administrative claims). Without standardization, conducting a study that uses multiple observational databases has proven to be expensive, time-consuming and difficult to replicate.


THE SOLUTION

Converting the data in these disparate databases into a common data model (CDM), with common representation, (terminologies, vocabularies, coding schemes) provides researchers with the ability to conduct studies that are cost-effective, faster, and more reliable. OMOP¹ is a common data model that allows for the systematic analyses of disparate observational databases using standardized analytical methods and tools developed by the OHDSI² community. The beneficial combination of a common data model along with common methodologies, provides researchers with the ability to perform health research analytics at scale.

THE MYTHS AND THE TRUTHS

As interest in using a common data model to analyze multiple heterogenous databases increases, so do questions about the accuracy and effectiveness of these data conversions. IQVIA is a global leader in OMOP common data model conversions. We currently host more than 12 datasets in the OMOP format and have conducted over 20 conversions.

Here are some common misconceptions we have heard over time and the truths behind them:

¹OHDSI (Observational Health Data Science and Informatics) is a public initiative independent of IQVIA

²OMOP (Observational Medical Outcomes Partnership) was a public partnership between FDA and industry, developing the OMOP CDM and Standardized Vocabularies; now maintained by OHDSI

Myth #1 "Loss of Data"

Data Quality

MYTH

"Converting to a CDM will result in "losing" data because it does not map to the standard."

TRUTH

After converting data from source to OMOP, IQVIA has a standard quality control service including:

- OHDSI Data Quality Dashboard
- Quality Control checks
- On-premise checks
- Data Profiling checks

RESOURCES

\times	DATA QUALIT FULL_201905_SOUT	RCE_DA	ſA										
			Ver	fication			Va	lidation			-	Total	
FULL_201905_SOURCE_DATA		Pass	Fail	Total	% Pass	Pass	Fail	Total	% Pass	Pass	Fail	Total	% Pass
OVERVIEW	Plausibility	1611	228	1839	88%	274	13	287	95%	1885	241	2126	89%
METADATA	Conformance	590	91	681	87%	97	7	104	93%	687	98	785	88%
	Completeness	329	57	386	85%	13	2	15	87%	342	59	401	85%
	Total	2530	376	2906	87%	384	22	406	95%	2914	398	3312	88%

	Data Collection: Adjudicated claims (accepted and paid by the payer)	Patient Type: Inpatient, outpatient and emergency room			
General Database Information	Data Coverage: Number of Patients = 158 Million	History / Update Frequency: Data start data = 2006 Refresh Period – Quarterty			
	Geographical distribution: Selected regions of the United States the Payors are commercially present				
	Petlent demographics: Yese of birth Gender 3 digit zijn code	Conditions: Total number of records = 11.60 (Percentage mapped to Standard Concept 99% Number of relevant Constition Concept (97% percentile) = 3.61k			
Key Patient Information	Drugs: Lots number of records = 5.038 Percentage mapped to Standard Concept = 90% Number of relevant Drug Concepts (9/th percentite) = 2.78k	Procedures: I otal number of records = 8.368 Percentage mapped to Standard Concept = 99% Number of relevant I trocedure Concepts (9/th percentale) - 1.84k			
Key Physician & Practice	Providers: Number of providers = 52.9M	Care Siles: Number of care sites - Not reported These are not identified but typical organization settings			
Information	Visits: Number of outpetient visits = 4,898 Number of inpatient visits = 380M				

QID	SOURCETABLE	SOURCEFIELD	TARCETTABLE	TARCETFIELD	VALIDATIONACTION	CONSTRUCTABLE	VALIDATIONRESID
1 3200	care_site	care_site_id			A unique identifier for each Care Site		PASS
2 9202	care site	place of purvice concept id	concept	concept 14	populated with a concept_id from concept_table where domain_id = Place of Service and standard_concept = 2. If none is found then just produce this field with 0.		7420
3 6203	condition_scourrance	condition_occurrence_id			Prisary key. A unique identifier for each row in the table.	1 I	7400
					This is a required field. A foreign key identifier to the Parcon in		
4 9204	condition occurrence	person id	person.	percon.id	the person table.		PASS
5 9205	condition ecourtence	condition concept id	concept	concept 1d	This is a required field. It is populated with a concept_id from concept_table where demain_id = Condition and standard_concept = 0. If more is found then have required the filed with 0.		7422
6 5205	condition_scourrence	condition_start_data	THITSON	year.of.birth	Nust be populated with a data after cds.person.year.of.birth	101117	FATL.
7 5207	condition accurrence	condition start data	death	death date	Hust be populated with a data before cds. death. death. date + 60 days	5	PASS
8 9209	condition occurrence	condition end date	DWT NOD	year of hirth	Bust be populated with a date after cds. person year of birth	6	7455
9 9210	condition_scourrence	condition, and, date	clearly	death_date	Nurt be populated with a date before cds. death. death. date * 60 days	6	7400
0 4211	condition accurrance	condition and date	Geral	des di_de ce	If nonulated, surt he between 00:00 and 22:59	6	2400
1 4213		condition_type_concept_id	concent	concept_14	Rust be populated with a concept_id frum dwain_id = Type Concept, vecabulary_id = Condition Type, and standard_concept = S OH 0		PASS
2 022 4	condition occurrence	provider 1d	provider	provider 1d	If populated, must be with a provider 1d from the provider table	5	7411
3 4215	condition_scourrence		visit courses	visit_scourrance_id	If populated, aust be with a visit_occurrence_id from the visit_occurrence_table		Pa22
4 9217		condition_source_concept_id	concept	concept_1d	This is not a required field. It is populated with a concept_id from concept table		PASS
5 9220	death	perron 14	P#72-05	percon 14	This is a required field. A foreign key identifier to the Person in the person table. Each person id can only have 1 death date.		7400
16 9230	death	death data	parron	year_of_hirth	Rust be populated with a data after ods. person year of birth		PACC
10 9200	00910	04410_0414	person	year_ot_strus	Rist to populated with a data after con.person.year_of_oirth		7400

Myth #2 "Loss of Accuracy in Conversion"

Retaining the Accuracy of Source Data

MYTH

"Using OMOP standards can degrade the accuracy of the data. There could be issues in the conversions ability to accurately reflect a data set."

TRUTH

- Validation studies have found minimal differences in the source to OMOP data
- DA France / LPD France validation study found consistency between native and OMOP data sets

Reference: Schwalm M, Raoul T, Chu D, Shah U, Potdar M, Van Zandt M, Coffin G, Jouaville SL. Conversion of a French Electronic Medical Record (Emr) Database into the Observational Medical Outcomes Partnership Common Data Model. Research on Methods – Databases & Management Methods. 2017 Oct 01; vol 20.issue 9, PA741

RESOURCES

CONVERSION OF A FRENCH ELECTRONIC MEDICAL RECORD DATABASE INTO THE OBSERVATIONAL MEDICAL OUTCOMES PARTNERSHIP COMMON DATA MODEL

IMS Health & Quintiles are now

Table 3 : Patients profile : comparison between the 3 data sources : DA FR Native / DA FR OMOP / LPD Native

			•
	DA FR NATIVE	DA FR OMOP	LPD NATIVE
	N=12 302*	N=12 382*	N=15 623
Males	7 179 (58.4)	7 231 (58.4)	9 291 (59.5)
Age (in year))	74.6 (± 11.1)	74.4 (± 11.1)	74.6 (± 11.1)
Age ≥75 years	7 055 (57.3)	7 032 (56.8)	8 981 (57.5)
BMI	28.1 (± 5.3)	28.2 (± 5.3)	27.9 (± 5.3)
Diastolic blood pressure	76.2 (± 12)	79.3 (± 20)	76 (± 9)
Systolic blood pressure	131.9 (± 15)	132.7 (± 15)	133 (± 15)
Co-treatments			
NSAIDs	5 320 (43.3)	5 341 (43.1)	7 492 (48.0)
Anti-arrhythmic drug	6 014 (48.9)	6 018 (48.6)	7 425 (47.5)
Injectable anticoagulants	373 (3.0)	377 (3.0)	482 (3.1)
CHADS ₂ Score ⁽²⁾			
0	2 262 (18.4)	2 311 (18.7)	2 638 (16.9)
1	3 997 (32.5)	4 027 (32.5)	5 026 (32.2)
≥2	6 043 (49.1)	6 044 (48.8)	7 959 (50.9)
CHA2DS2-Vasc Score(3)			
0	822 (6.7)	844 (6.8)	998 (6.4)
1	1 559 (12.7)	1 591 (12.8)	1 774 (11.4)
≥2	9 921 (80.6)	9 947 (80.3)	12 851 (82.3)

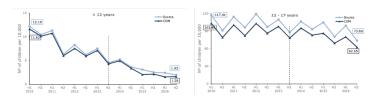
*OMOP model assign an occurrence date to all events including clinical measures and lab results. As a result there is a slight difference in visit number between DA FR OMOP and DA FR NATIVE, which explains a slightly elevated number of included patients in DA FR OMOP. Myth #3 "Loss of Accuracy in Vocab Mapping"

Evaluating the Accuracy of Vocabulary Mapping

MYTH

"OMOP vocabulary mappings are incorrect. There could be issues in the preservation of source information as it is translated to standard concepts."

TRUTH


- Validation studies have found minimal differences in the source to OMOP data
- EMA Validation study of IQVIA IMRD UK found consistency between source and OMOP CDM data

RESOURCES

> Clin Pharmacol Ther. 2020 Apr;107(4):915-925. doi: 10.1002/cpt.1785. Epub 2020 Mar 2.

Can We Rely on Results From IQVIA Medical Research Data UK Converted to the Observational Medical Outcome Partnership Common Data Model?: A Validation Study Based on Prescribing Codeine in Children

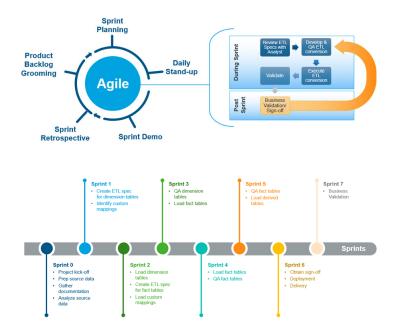
Gianmario Candore ¹, Karin Hedenmalm ¹, Jim Slattery ², Alison Cave ², Xavier Kurz ², Peter Arlett ² Affiliations – collapse

SIX-MONTHLY PREVALENCE (PER 10,000) OF CODEINE PRESCRIBING FOR PAIN IN 0–17 YEARS

Reference: Candore G, Hedenmalm K, Slattery J, Cave A, Kurz X, Arlett P. Can We Rely on Results From IQVIA Medical Research Data UK Converted to the Observational Medical Outcome Partnership Common Data Model?: A Validation Study Based on Prescribing Codeine in Children. Clin Pharmacol Ther. 2020 Apr;107(4):915-925.

Myth #4 "It Takes Too Much Time"

OMOP Conversion Overview


MYTH

"Taking data from source format to OMOP common data model is tedious and time consuming."

TRUTH

- Yes, it takes time to convert data into the OMOP CDM
- We spend time cleaning the data and removing data that cannot contribute to analytical use cases
- We push down common business rules (e.g. patient eligibility criteria, observational period, validity of conditions) into the ETL process. However, this saves significant time during execution of the analytics study packages

RESOURCES

Myth #5 "You Don't Have My Use Case in OMOP"

OMOP Evolves to Meet Analytical Needs

MYTH

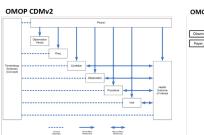
"OMOP is not good enough for my analytical use case or doesn't cover the therapeutic area that I want to study."

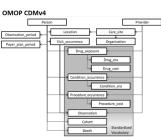
TRUTH

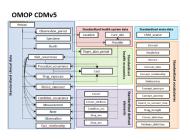
- It's true, OMOP was not built for every use case
- OMOP continues to evolve to support additional use cases when there is enough of a common need. For example, to support oncology data, OHDSI's Oncology working group designed an Oncology extension to house oncology-specific information in the OMOP CDM

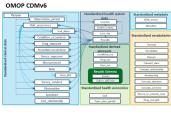
Myth #6 "I Have to Learn New Medical Terms"

OMOP Vocabulary Hierarchy

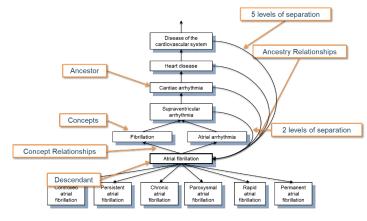

MYTH


"I have to learn new medical terms. OMOP is forcing me to speak in SNOMED, RxNorm and LOINC codes."


TRUTH


- OMOP CDM preserves the source codes from the native data and creates a map to a standard concept that is interoperable across all data assets
- You can always start with source codes (e.g., ICD-9/ ICD-10) and use the maps to relationships to find standards
- The hierarchy structure in the standard vocabulary is easily navigated using ancestors and descendants

RESOURCES



Ancestry Relationships

CONTACT US iqvia.com