Core obesity model to assess the cost-effectiveness of weight management interventions

Maria De Francesco 1, Sandra Lopes 1, Henrik Meinecke 1, Gabriela Vega-Hernandez 1, Mark Lamotte 1, Michael J E Lean 1

1IQVIA, HEOR/HTA, Zaventem, Belgium; 2Novo Nordisk AS, Seborg, Denmark; 3Human Nutrition, University of Glasgow, Glasgow, UK

Novo Nordisk provided full sponsorship for this study.

Michael Lean has received departmental research funding and contributed to Advisory Boards for Novo Nordisk. Mark Lamotte is an employee of IQVIA. Sandra Lopes and Henrik Meinecke are employees of Novo Nordisk. At the time of model development, Maria De Francesco was an employee of IQVIA and Gabriela Vega-Hernandez was an employee of Novo Nordisk. The authors are grateful to Jannie Coons of Wasmeder Medical (supported by Novo Nordisk), for writing assistance. Presented at the International Society for Pharmacoeconomics and Outcomes Research (ISPOR) Europe 2018, 10–14 November 2018, Barcelona, Spain.

Core obesity model to assess the cost-effectiveness of weight management interventions

Background

- Elevated body mass index (BMI) increases morbidity and mortality from chronic diseases (including type 2 diabetes (T2D), cardiovascular disease (CVD), musculoskeletal disorders, hypertension, gait problems and some cancers) 1-3.
- The objective of this study was to develop a ‘core obesity model’ to assess long-term complications and costs and effects of different interventions.

Objectives

- The objective of this study was to develop a ‘core obesity model’ to assess long-term complications and costs and effects of different interventions.
- This poster explores the model structure, its inputs and its clinical outcomes, using an illustrative example.

Methods

- A Markov model was developed (Microsoft Excel™ 2013, Redmond, WA, USA) to estimate the costs and effects of a cohort with obesity over a lifetime time horizon.
- The model cycle length is 3 months for the first year, allowing for a treatment ‘stopping rule’ at 12 weeks, and annually thereafter.
- The model is able to compute results for time horizons ranging from 1 to 40 years.

Health states

- Health states are additive and reflective of complications that:
 - are highly related to obesity according to the World Health Organization (Figure 1);
 - have substantial effects on costs, quality of life (QoL) and/or life expectancy.
- A graphical representation of the model structure is presented in Figure 1.

Mortality

- General population age and gender-specific all-cause mortality is included in the model, based on country-specific life-tables.
- Both long-term and short-term mortality are considered.

Transitions

- Transitions describe the progression of the cohort between health states.
- A systematic review of the literature in 2017 identified risk equations, which can inform the transition probabilities between health states (Table 1).

Clinical and economic outcomes

- The clinical outcomes of the model include:
 - cumulative incidence of obesity-related complications;
 - QoL;
 - life expectancy;
 - quality-adjusted life expectancy.
- The economic outcomes of the model include:
 - treatment ‘stopping rule’ at 12 weeks, and annually thereafter.
- Baseline characteristics of the model starting cohort (European NGT population) were defined at model entry (Table 2).

Results

- Over a 10-year time horizon, the model predicted 5.0% mortality, 5.8% acute coronary syndrome (ACS) and 2.1% stroke (Figure 3).
- Knee replacement occurred in 6.3% of the cohort and the proportion alive with T2D was 5.0%.

References:

18. Incidence of knee replacement was reduced to 4.4% and the proportion alive with T2D was 3.8%.
19. TKR, total knee replacement.

Discussion/Limitations

- Prediabetes is defined based on baseline; however, no risk equation for developing prediabetes were identified.
- Although its management costs are low, this potentially underestimates future prevalence.
- Some risk equations, for example UKPDS28, do not include BMI as an independent risk factor predicting the risk of CVD.
- Other risk equations include BMI only up to certain BMI levels.
- Finally, this study is limited by lack of prospective long-term data on hard outcomes after intentional weight changes.

Conclusion

- The presented Core Obesity Model is novel in assessing the long-term effects of weight management interventions on such a comprehensive set of obesity medical complications.
- This model could therefore be used to inform cost-effectiveness analyses on treatments for adult patients with obesity.